
thermal instability develops is in principle the same as before: beginning with a certain 
critical pressure gradient, the heat source ceases to balance the sink. If fluid velocity 
is less dependent on temperature than the rate of heat absorption, then critical phenomena 
are not observed; in this case, a decrease in fluid temperature leads to an equivalent de- 
crease in the capacity of the heat sink, thereby stabilizing the processes of heat transfer 
and motion. 
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MODEL OF THE TAYLOR INSTABILITY 

M. D. Kamchibekov UDC 532.526 

i. The Taylor (or Rayleigh-Taylor) instability arises on the boundary between a heavy 
and a light liquid in the field of gravity, when the heavy liquid is above the light one. 
The Taylor instability has been studied actively both experimentally [i] and theoretically 
with analytical methods [2-5], and by numerical simulation of the development of the in- 
stability [6-8]. Interest in this phenomenon has increased in recent years in connection 
with problems of control of thermonuclear synthesis with inertial confinement of a plasma. 
It was shown in [9, i0] that the development of an instability in the surface layers of a 
target is a Taylor instability and can lead to the deterioration of the symmetry of com- 
pression and characteristics of the target. In calculating the development of the Taylor 
instability in such problems a simple model is useful, which should describe the growth 
of perturbations with acceptable accuracy for practical purposes. In the present paper, 
using physically justifiable assumptions about the form of the perturbation, we simplify 
the formation of the problem on the development of the Taylor instability and obtain equa- 
tions which correctly describe both the linear and asymptotic stages of the Taylor instability. 

2. The usual formulation of the Taylor instability problem is as follows [4]. In a 
uniform gravity field with acceleration g directed downward, a heavy liquid with density p 
occupies the space z > 8(x, t) and a light liquid with density p,(p, < p) occupies the space 
z < 8(x, t), where 8(x, t) is the vertical position of the surface between the heavy and 
light liquids, and z and x are the vertical and horizontal Cartesian coordinates. At the 
time t = 0, the initial perturbation of the dividing surface is specified as 

O(x, t : 0 ) - -  O o c o s k x  (2.1) 
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Here <v2>+=Si-- S dsv~ . . . .  
s:i 

with wavelength I = 2~/k. It is required to find the subsequent evolution of the surface 

8(x, t). 

The periodicity of the initial perturbation (2.1), and its eveness with respect to x 
means that we can study the flow in the restricted interval 0 ~ x!I/2. It is known [4] 
that in the nonlinear stage of the instability, the initial sinusoidal form of the boundary 
is distorted: the heavy liquid penetrates into the light liquid in the form of thin "streamers," 
and the light liquid floats up into the heavy liquid in the form of "bubbles." In the 
region z = O, 0 ~ x < I/2, the "bubble" occupies a cross section S, = [0, x0], and the 
"streamers" has a cr~ss section S_ = [x 0, I/2], where x 0 is the "bdbble"-"streamer" boundary. 
For the perturbation (2.1), the horizontal coordinate of the center of the "bubble" is x = O; 
the corresponding coordinate of the center of the "streamer" is x = 1/2 and x 0 = I/4. We 
will call the maximum penetration depth of the heavy liquid into the light one, measured 
from the equilibrium position z = O, the amplitude of the "streamers" and the corresponding 
quantity for the light liquid will be called the amplitude of the "bubble." We attempt to 
construct a model of the Taylor instability which will describe the growth of perturbations 
in terms of the "streamer" and "bubble" amplitudes, both in the linear and nonlinear stages 
of the instability. 

We consider the case p, = O. We assume potential flow of an incompressible, inviscid 
liquid. Then in the field of gravity g the Cauchy-Lagrange integral of the heavy liquid can 
be written in the form 

O~I3 v 2 2 P0 
at + 7  + gz + p v~ p 2 + ~ - '  z > 0 ( x ,  t),: ( 2 . 2 )  

where ~ is tile velocity potential, defined in terms of the velocity field v by the relation 
v = Vr p(x, z, t) is the pressure field, P0 ~ p(z ! 8), v~ e v 2 (z = O, x = xo), p is the 
density of the heavy fluid, g is the gravitational acceleration, G(x, t) is the vertical 
position of the perturbed surface, and x0 is the "bubble"-"streamer" boundary. 

'I tl We assume that the cross sections of the bubble S and the "streamer" S are slowly 
varying in time, and then average (2.2) over the "bubble N and "streamer" cross-sections 

for z > 8max: 
<~>~ ~ 2 

a t % Po (2.3) a-F + T (v2>~ + gz + <P>• = - ~  + -0-" 

; Omax is the maximum value of O(x, t) at time t, the plus sign 

denotes quantities averaged over the "bubble" cross section, and the minus sign denotes quan- 
tities averaged over the "streamer" cross section S . 

In particular, 
Xo X/2 

• 
<v~>+ = % dxv ~ (x, z, t), <v~>_ = 

0 x 0 

We introduce the parameter 

<2>+ 

and in place of (2.3) we write 

t 2 1 Vo ~ Po 
~ t  <eg>+ + T 7  + <v~>+ + gz + T<P>+- = T + T "  (2.4) 

We make the following assumptions in obtaining the basic equations of the Taylor in- 
stability model: 

i. The perturbation has a "rectangular" profile, characterized by the parameters b (the 
"bubble" amplitude), a (the "streamer" amplitude), and x0, the halfwidth of the "bubble," 
related to a and b by the equation of continuity 

bx o= a(E/2 - -  Xo). ( 2 . 5 )  

2. E q u a t i o n  ( 2 . 4 )  can  be c o n t i n u e d  t o  t h e  r e g i o n  z < 9ma x u s i n g  t h e  f u n c t i o n a l  de -  
p e n d e n c e  o b t a i n e d  f o r  z > 0ma x.  
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3. The functions in (2.4) can be obtained by using the asymptotic representation #~ 
for the velocity potential, which using the periodicity in x and the condition that the per- 
turbations go to zero when z ++~, has the form 

dO, = - - q ( t ) e - ~ Z c o s k x ,  Z > O m a x .  

From (2.6) we obtain the velocity field: 

v~ = q k e - k ~ c o s k x  = - - k d O , ,  

V x = q k e - ~ Z s i n k x ,  v 2 = (qk)% -2kz. 

It follows from (2.7) and the definition of the parameter ~+ 
but are functions only of x0: 

x o 

,~ ) dx sin s kx 
I -- ~-~ sin 2~8 

o = t + ,: 
y+ = I + ~ o  t 

,[ dx cos 2 kz t + ~ sin 2 ~  

0 

j " dx sin 2 kx 
I + 2 n  ( t - - 5 )  sin2n5 x 0 

? _ = l + z / 2  = 1 +  I ' 
.( ~ dx cos 2 kx I - -  2~ (t----6) sin 2~6 

x 0 

x 0 
5 = X 7  ~, 1 / 2 ~ < 5 < I ;  

that y+ 

( 2 . 6 )  

( 2 . 7 )  

do  n o t  d e p e n d  on z ,  

( 2 . 8 )  

and in the limit 6 + 1 7+ + 2, 7_ + i. 

Using the relation <dO,>_+ =--(I/k) <uz)i , which follows from (2.7), we have in place of 
(2.4) 

1 0 <vz>++ I v2 t v~ Po ( 2 . 9 )  
k at Ty+< z>+_ + gz + - ~ < p > _ +  = y  + - ~ .  

Then  t h e  e q u a t i o n  f o r  t h e  " b u b b i e "  a m p l i t u d e  b i s  o b t a i n e d  f r o m  ( 2 . 9 ) ,  p u t t i n g  

z = b, <v~>§ = b, <v~>+ = b ~ ,  <p>+ = p 0 :  : 

k g = gkb - -  -~  [v~ - -  ?+/~2]. ( 2 . 1 0 )  

, Similarly we can obtain an equation for the "streamer" amplitude a, putting z =--a, 
u 2 (vz >- ---- --a, < z>-=a 2, < P > - = P o  i n  ( 2 . 9 ) :  

"" k 
a = gka + -~ [v, 2, -- ?_ai]. (2.11) 

In order to close the system of equations (2.10) and (2.11), we must determine the quantity 
v02. In general, this cannot be done. However note that if we omit the expressions in 
square brackets in (2.10) and (2.11), we obtain the usual equations of the linear theory 
for the growth of the perturbations. This means that we can interpret the terms inside the 
square brackets in (2.10) and (2.11) as corrections to the linear theory. Since for small 
perturbation amplitudes the representation of the velocity potential in the form (2.6) is 
correct also for z < 8ma x, and the corresponding quantity v 2 depends only on z: 

V 2 ~ e-2hz 

we u s e  l i n e a r  e x t r a p o l a t i o n  on  v 2 ( z )  f r o m  z = b t o  z = 0:  

v0 ~ = <v 2 (z - -  b)>+ ( l  + 2kb) = ?+b~ (1 + 2kb).  

Then  i n  p l a c e  o f  ( 2 . 1 0 )  we h a v e  

"b = gkb -- ? +k2bb ~. (2.12) 

S i m i l a r l y  f o r  t h e  e x p r e s s i o n  i n  s q u a r e  b r a c k e t s  i n  ( 2 . 1 1 ) ,  we r e p r e s e n t  v0 2 i n  t h e  f o r m  
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v~ = <v ~ (z = 0)>_ = <vl (z = 0)>_ + <v~ (z = 0)>_. 

Using the approximation 

<v~(~=0)>_ <v~(~=b)>+ (~+ t )~  

<v~ (z = - -  a)>_ ---- a ~ = <v~ (z = 0)>_ (l + 2ka), 

we obtain a~ 
2 "2 b2 _ _  

[v o - ' f _ a  ] = ( ? + - - 1 )  + i + 2 k a  

and the equation for a in the form 

-. ~ [ k ~ a ~ a = gka + "2- L ( ? + -  i) + l + 2 k a  

?_a ~ 

- ~,_a~]. (2.13) 

Analysis of Eqs. (2.12) and (2.13) shows that i) for small perturbation amplitudes and 
velocities, (2.12) and (2.13) are nearly the same as the equations of the linear theory; 2) 
as the perturbation amplitude (and velocity) increases, the acceleration of the "bubble" 
decreases and approaches zero, such that asymptotically the "bubble" rises with a constant 
velocity; 3) with increasing perturbation amplitude (and velocity), the motion of the 
"streamer" approaches free fall in the field of gravity with acceleration g. 

The asymptotic velocity of the "bubble" follows from (2.12) 

v ,  = F ~ 2 k  = 0 2 8  F ~ .  

This result agrees closely with the data of [i, 3-7]: 

v ,  = (02  - 03 )  K}Y.  

We note that for large initial perturbation velocities v00, the "bubble" experiences a 
strong braking. This leads to a "rapid" distortion of the perturbation profile, i.e., to 
a rapid change of x0 in time. In this case the linear theory is inapplicable even for small 
perturbation ~plitudes. It follows from (2.12~ that the condition for a "rapid" variation 
of the profile is ?+k2b2b>>gkb or for ~+ = 2, b = v00 

2kV~o/g >> I. 

One can e s t i m a t e  t h e  g rowth  o f  t h e  p e r t u r b a t i o n s  in  t h i s  c a s e  i f  in  ( 2 . 1 3 )  we p u t  

( ? + - - l )  b~=Uv~o- -g2  ? _ = i .  
Equations (2.12) and (2.13) can be generalized to the case where the density of the 

light liquid p, is nonzero. The asymptotic potential in the light liquid is written in the 
form 

(D, = ~ (t) e ~ cos kx, z < Omtn, 

where 0mi n is the minimum value of the surface 8(x, t). 

Averaging the Cauchy-Lagrange integral (2.2) for the above potential over the "bubble" 
and "streamer" cross sections, we obtain relations analogous to (2.9). Further, if we 
assume p, << p, and ignore the square of the velocity of the light liquid and use the con- 
tinuity conditions on the boundary of the light and heavy liquid for the quantities 
<Vz> + and <p>• we obtain the following equations for b and a: 

(p-p,h b = g ,p---~-~, j kb - -  ,+ (p---~p, ) k2b2b; (2.14) 

a=g/p--~2,] + ~  ~ (V+-t )  +t+2k~ ~_~2 . (2.15) 

E q u a t i o n s  ( 2 . 1 4 )  and ( 2 . 1 5 )  a r e  c o n s i s t e n t  w i t h  ( 2 . 5 )  and ( 2 . 8 )  and a r e  t h e  b a s i c  e q u a t i o n s  
o f  t h e  T a y l o r  i n s t a b i l i t y  mode l .  For  s m a l l  p e r t u r b a t i o n  a m p l i t u d e s  t h e y  a g r e e  w i t h  t h e  
l i n e a r  t h e o r y ,  and f o r  l a r g e  a m p l i t u d e s  t h e y  g i v e  t h e  c o r r e c t  a s y m p t o t i c  fo rms  f o r  t h e  " b u b b l e "  
and "streamer". It is not difficult to obtain the widths of the "bubble" and "streamer" 
using (2.5) and knowing the perturbation amplitude. 
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3. The results for the Taylor instability model were compared with the corresponding 
two-dimensional calculations [7] for the values P/0, = 1.5, 2.0, and i0 and are shown in 
Figs. 1-3; our results are compared with the two-dimensional calculations of [6] for p = i, 
p, = 0, and are shown in Fig. 4. In [7] the following perturbation parameters are used: 
k = 157, a 0 = 0, v00 = 0.078, g = i, where a 0 is the initial amplitude of the perturbation. 
The parameter 2kv~0/g = 1.91, which shows the effect of the nonzero density of the light 
liquid on the "slow" distortion of the profile, and consequently supports the applicability 
of equations (2.14) and (2.15) in this case. In [6] the following parameters were used: 
k = 0.6545, a0 = 0, v00 = 3.272, g = I. Then 2k~0/g = 14, which corresponds to a "rapid" 
distortion of the profile, therefore in the equation for the "streamer" (2.15) we used 

Figures 1 through 4 show the dependence of the "streamer" amplitude (solid curve) and 
"bubble" amplitude (dashed curve) on time. Comparison of the perturbation amplitudes 
calculated according to our model with the corresponding quantities obtained in the two- 
dimensional calculations of [6, 7] shows that the agreement is satisfactory. In Figs. 2 
through 4 we also show the results for the heuristic model of the Taylor instability of 
[II]; overall the results of this model agree somewhat more poorly with the calculations 
of [6, 7]. 

The Taylor instability model given here does not contain phenomenological constants 
(unlike [ii]) and can be used to estimate the growth of perturbations for the cases of both 
"slow" and "rapid" distortion of the perturbation profile for a wide range of p/p,. 
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